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The linear and nonlinear Boltzmann equation for very hard particles (VHP) is 
considered in the case when the collision between two particles may lead not 
only to elastic scattering, but also to a removal event with the disappearance of 
the molecules. The extended transport equation is solved for arbitrary initial 
distributions. The computations are carried out explicitly for a special class of 
initial distributions and for various removal rates. The results are demonstrated 
graphically. Finally, source terms fulfilling physically reasonable conditions are 
introduced into the VHP model, and the time-dependent particle number is 
calculated. 
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1. I N T R O D U C T I O N  

Exact solutions of  the nonlinear Bol tzmann equat ion have been found only 
for special model  cases. (1'2) Because of  the complex structure of  all physi- 
cally relevant scattering kernels, this integrodifferential equat ion resists 
a s t rong solution in general. Part icularly remarkable,  therefore, is the 
discovery of  an exact solution of  the nonlinear Bol tzmann equat ion for 
a spatially homogeneous  and isotropic gas of  Maxwell molecules by 
Krupp  (3) and independently by Bobylev (4) and K r o o k  and Wu. (5'6) This 
special solution, the B K W  mode, holds only for a distinct class of  initial 
distributions. 

For  arbi t rary initial conditions, Ernst  and Hendriks (7'8) obtained, by 
applying the Laplace transformation,  a closed solution of  the model- 
Bol tzmann equat ion for a system of very hard particles (VHP)  with two 
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translational degrees of freedom. Though the differential cross section of 
the VHP model does not correspond to any physical interaction law, it 
satisfies the conservation laws (that of momentum only when interpreted as 
deterministic ~ and a H-theorem can be derived for it. Thus the VHP- 
Boltzmann equation is not only of high interest as a closed soluble mathe- 
matical model. As a physical model, it is expected to predict too fast a 
relaxation in the high-energy tail of the distribution since the cross section, 
which increases (in contrast to the hard-sphere model (1~ like (energy) 1/2, 
overestimates the efficiency of the collisions at high energies. The complete 
solubility of the VHP-Boltzmann equation enables the relaxation process 
to be analyzed for all energies and any nonuniformities in the approach to 
equilibrium to be studied. It is further important to note that there exists 
a simple nonlinear mapping between the VHP model and the kinetic 
equation of reacting polymeres. (n'12) 

An essential goal of nonlinear rarefied gas dynamics is the molecular 
kinetic approach to chemical reactions (see ref. 13 and references therein). 
This requires not only the consideration of elastic and inelastic collisions, 
but also that removal events and external sources be taken into account. 
Hence, the intention of this paper is to extend the treatment of ref. 8 by 
including removal and external source terms in the VHP equation. 

First, we consider in our model scattering and removal effects of test 
particles between themselves as well as removal effects of test particles 
when colliding with the field particles of a host medium. By resorting to the 
special case of constant collision frequencies for removal events, we 
obtained exact solutions for both the number densities and distribution 
functions due to arbitrary initial conditions. The essential step in the solu- 
tion procedure rests upon the introduction of a new dependent variable in 
connection with an appropriate transformation of the time variable. With 
these new variables the extended VHP-Boltzmann equation appears in its 
simple original form and can be solved in a closed form by applying the 
method developed by Hendriks and Ernst. (8) 

If in addition physically reasonable external source terms are taken 
into account, then it is only possible to calculate analytically the time- 
dependent particle number. 

We further show that our method can be successfully applied to attack 
the linearized VHP problem for the case in which scattering and removal 
events occur. 

Finally, we consider an initial distribution as a sum of two 
Maxwellians and compute explicitly the time evolution of the distribution 
function for various removal rates in the linear and nonlinear cases. 
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2. THE N O N L I N E A R  V H P  M O D E L  W I T H  R E M O V A L  EFFECTS 

2.1. Formulat ion of the Kinetic Equation 

The time evolution of the distribution function of a spatially 
homogenous and isotropic gas of colliding neutral particles is generally 
described by the nonlinear Boltzmann equation (I) 

~s(, ,  ,)-- fff dw d,' dw'r w(,,~, i vw)s(,', ,)s(w', ,) 

- W(vw I v'w')/(v, Of(w, t)] (1) 

In the very hard particle (VHP)model (s) in two dimensions, binary 
collisions (v, w --> v', w') occur with the transition probability 

w(vw I v'w') -- W(v'w' I v, w) ; 6 ( v  ~ + w2 _ v , :  _ w,~) (2) 

It is further convenient to change to the energy representation of the 
distribution function 

F(x, t)= 2~/(Ivl, t), x=�89 2 (3) 

Following the analysis of Hendriks and Ernst, (8) the VHP-Boltzmann 
equation is obtained (apart from a numerical factor which will be absorbed 
in the unit of time): 

'~ f i l l '  -~ f (x ,  t) = du dy[F(y,  t) F(u - y, t) - F(x, t) F(u - x, t)] (4) 

If only scattering events are considered, the particle number 
N =  S dxF(x ,  t) and the total energy E = ~  dxxF(x ,  t) of the system are 
conserved. 

Choosing units N = E =  1, it is then possible to rewrite the VHP 
equation (4) as 

;;;o ~ + x + l  F ( x , t ) =  du d y F ( y , t )  F ( u - y , t )  (5) 

The solution of this equation has been obtained in closed form for 
arbitrary initial conditions by Ernst and Hendriks. (7) 

Now we extend the VHP equation by introducing the removal term 

2 ~ t /  J(O~f~R,=f dw W ( v , w ) f , v , t ) f ( w , , )  (6, 
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which describes the interaction of test particles assuming that in these 
events the colliding particles are removed. (14'15) 

We confine ourselves to the simple but important case of constant 
removal collision frequencies W(v, w) = CR = const: 

Of) =CR.f(v,t) dwf(w,t)=CRf(v,t)N(t) f 
where N(t) denotes the time-dependent particle number. 

The introduction of a further lost term 

(7) 

(~f)  = d .~ / ( , ,  t) (8) 
R2 

should describe the removal of test particles when colliding with field 
particles of a host medium of fixed total density N. Taking into account 
Eqs. (7) and (8), then we can write the initial VHP-Boltzmann equation (4) 
in the form 

~F(x,t)= ~du dy[F(y, t)F(u-y, t )-F(x, t )F(u-x, t )]  ~t 

- CeF(x, t) ;? F(y, t) dy - NCRF(x, t) (9) 

The removal collision frequencies CR and CR are positive constants. 

2.2. General  Solut ion of  the V H P  Equation w i th  Removal  

�9 First, in order to determine the time-dependent particle number N(t), 
we take the zeroth moment of Eq. (9) and obtain the differential equation 

dN~tt) + CRN(t) 2 + CRNN(t) = 0 (10) 

Equation (10) is solved by the function 

N(O) ~d~ 
N(t)= ~ .  (11) 

[NCR + N(O) Cn] exp(h@R t ) -- N(0) CR 

For simplicity, we set N(0)=  1. 
Next we calculate the first moment of Eq. (9), which results in the 

following equation for the total energy of the system: 

dE(t) 
- - ~  + CRE(t) N(t) + CRNE(t) = 0 (12) 
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The solution according to E(0)= 1 is given by 

9dR 
E(t) - (13) 

(dRN + CR) exp(NC'R t)-  Ce 

Hence, we observe an identical time dependence for the total energy and 
the particle density, which may be interpreted as a constant temperature T 
during the time evolution of our particle system, 

k T(t)= 1 f ?  m - ~  xF(x, t) dx = const (14) 

where k denotes the Boltzmann constant and m the particle mass. 
Following Boffi and Spiga, (16) we look for solutions of Eq. (9) in the 

form F(x, t )=N(t ) .  V(x, t). Using this ansatz, we can transform Eq. (9) 
into 

.(?V(x, t) 1 dN(t) + 
- - +  V(x, t) CRN(t) V(x, t)+ dRNV(x, t) 

8t N(t) dt 

= N(t) du dy[V(y, t) V ( u - y ,  t ) -  V(x, t) V ( u - x ,  t)] (15) 

Some manipulations on Eq. (11) lead to 

1 dN(t) 
N(t) dt 

CRN(t) -- CRN (16) 

With this result in mind and performing the second integral term in 
Eq. (15), we obtain 

8V(x, t) 
~t 

- - +  E(t) V(x, t)+ xN(t) V(x, t) 

= N(t) du dy V(y, t) V (u -  y, t) (17) 

by taking into account Eqs. (11) and (13). 
The introduction of a new independent time variable 

/ -  t 

r(t) = Jo dt' N(t') 

  expl 
CR 

(18) 
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reduces Eq. (17) to 

~-~ + x + 1 V(x, Q = du d y V ( u - y , z )  V(y,~) (19) 

This integrodifferential equation for V(x, T) is formally equivalent to the 
VHP-Boltzmann equation without removal terms (5). It can be solved for 
arbitrary initial distributions F(x, 0)=  V(x, 0) by applying the Laplace 
transformation 

f5 6(z, r)= dx e-xZV(x, z ) :  L[V(x, z)] (20) 

as shown in ref. 8. 
After some analysis, which is omitted here, one obtains the general 

solution of Eq. (19), 

~) = ~b(z + z) + ( z -  1) e -~ 
G(z, (z+ 1) r  -~ (21) 

The function r has to be determined from the Laplace transform of the 
initial distribution V(x, O) = F(x, O)/N(O), 

G(z, O) § (z - 1 ) 
O(z)- G(z, 0)(z+ 1 ) -  1 (22) 

Finally, the time evolution of V(x, ~) is found via the inverse Laplace trans- 
formation 

1 f~ +i~ = dz eX~G(z, "c) (23) V(x, 

where the path of integration should lie to the right of all points z where 
G(z,T) is singular. Thus, for the distribution function we obtain 
F(x, t)= N(t). V(x, ~(t)) under consideration of Eq, (18). 

2.3. Asympto t ic  Propert ies of the Distr ibut ion Function 

In the VHP model without removal interactions the Maxwell distribu- 
tion e -x is the equilibrium solution of the Boltzmann equation, a fact 
following from the validity of an H-theorem. 

In our case, the time transformation (18) shows the asymptotic 
behavior 

1 [ I + C R ~  l im f idnJ  = In ( 2 4 )  
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This means that the long-time characteristics of V(x, r) are described by 
the distribution function 

V(x , t=oo)=V x,r=~--s 1+ (25) 

depending on the removal collision frequencies Ce and de and the density 
of the host medium N. As the independent time variable v of V(x, r) is 
finite, even in the case t--, o% V(x, ~) never approaches a Maxwellian. But, 
if we neglect removal events caused by the scattering of test particles with 
the host medium, the Maxwell distribution again describes the asymptotic 
behavior of V(x, r), because 

~?dR~olim ,~o~lim r ( t )=  lim 1 I C ~ ]  ~d,~o~--~Rln 1 + --, oo (26) 

We want to emphasize that in both cases the solution of Eq. (9) given by 
F =  V- N obviously tends to zero for t ~ oo. 

2.4. Strong Removal  Interact ions Between Test Particles and 
Field Particles 

In the case of dominant removal interactions of the test particles with 
the host medium, i.e., CR ~ dR and dR ~> 1, we obtain instead of Eq. (9) the 
simple transport equation 

OF(x, t )_ (~R2VF(x, t) (27) 

Its solution is given by 

F(x, t) = Fo(x ) exp( - CRNt ) = Fo(x) N(t) (28) 

which means that the initial distribution decays proportional to N(t). 
The time-dependent particle number 

N(t) = exp( - dRNt) (29) 

according to N(0)= 1, has been calculated from the first moment of 
Eq. (27). 

3. THE B O L T Z M A N N  E Q U A T I O N  IN THE V H P  M O D E L  FOR A 
T A G G E D  PARTICLE 

The nonlinearity on the right side of Eq. (4) may be suppressed if we 
set (17) 

F(u -y ,  t )=exp( -u+ y), F(u-x ,  t )=exp ( -u+x)  (30) 
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Hence, we write the resulting linear VHP-Boltzmann equation in the 
following manner: 

+ x + 1 EL(x, t) = du e-U dy eYFL(y, t) (31) 

Equation (31) describes a particular particle in a bath of similar particles 
in thermal equilibrium. 

Removal terms arise because of interactions between test particles and 
field particles of the same kind with the total density Nt, and field particles 
of a host medium (total density N2) 

(OFL(x, t!) 
�9 -~ R = CR1N1FL(x, t) + CR2NzFL(X, t) = dRNFL(x ,  t) (32) 

Thus we obtain the linear VHP equation including removal terms in the 
form 

~ + x +  1 + CR,~ F L ( X , t ) =  due  -~ d y e Y F L ( y , t )  (33) 

From Eq. (33), taking the zeroth and first moments, respectively, we can 
easily derive the expressions for the particle number and the total energy 
of the system 

N(t )  = E( t )  = exp( - CR29t) (34) 

We set FL(X, t ) = N ( t ) ' H L ( X ,  t) and Eq. (33) results in 

+ x + 1 HL(x ,  t) = d u e - "  dy eYrir(y ,  t) (35) 

It is remarkable to note that in this linear case the considered removal 
events do not affect the auxiliary distribution function HL(x,  t). 

Equation (35) is formally equal to Eq. (33) and can be solved in closed 
form by using the Laplace transformation (~6) 

G(z,t) z(z+t+l) e_t(Go(z+t ) 1 ) 1 
( z + l ) ( z + t )  z + t + l  -t z + l  (36) 

with Go(z) = L[FL(x ,  0)] and G(z, t) = L[FL(x ,  t)]. 
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4. SOURCE TERMS IN THE VHP MODEL 

Starting from Eq. (4), we add a general source term Q(x, t )=  
s o . S(x, t), So >~ O, and take the zeroth and first moments of the resulting 
transport equation. We find 

dN(t) f o  dt = So S(x, t) dx (37) 

and 

dE(t) 
= S O | dx xS(x, t) (38) 

dt Jo 

For physical reasons the right sides of Eqs. (37) and (38) should be finite. 
Hence we require 

dx S(x, t) < ~ ,  dx xS(x,  t) < Go (39) 

The conditions (39) are fulfilled by the stationary 3-source Q(x)=  
S o 3 ( X -  Xo), Xo > 0, the Maxwell source Q(x, t )= Soe -x, and a source term 
in the form 

~'So, a<~x<<.a+e} 
Q(x) = ~0, else a > 0, e > 0 (40) 

Including source as well as removal terms we obtain the following non- 
linear VHP-Boltzmann equation: 

-z~ F(x, t) + CRN(t) F(x, t) + CRNF(x,  t) 
Ol 

= du dy[F(y,  t) F(u - y, t) 

- F(x, t) F(u - x, t)] + SoS(x) (41) 

Taking the zeroth moment of Eq. (41) leads to the differential equation for 
the particle number N(t), 

dN(t) 
d---t- + CRN(t)2 + CR2QN(t)= So (42) 
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Equation (42) is solved by the function 

f (CRNo+�89 v_,,~o,, ~ 

R o ~ R --P 

with 

/3 = E�88 + So cR] 

1 

2 
(43) 

(44) 

N(t) shows the long-time behavior 

1[,  ] 
lim N ( t ) = ~  /3--~ffRN > 0  (45) 

t ~ o o  

and, if no background removal effects occur, 

lim lim N(t)=( S~ (46) 

Equation (46) means that the equilibrium particle number depending only 
on the ratio between the source density So and the collision frequency CR 
is reached from above if the initial number of particles N(0) is greater than 
(So/CR) 1/2 and otherwise from below. 

This result can be derived as well from Eq. (42) by neglecting the term 
dN(t)/dt in the case of thermal equilibrium and setting CRAr = 0. Thus, we 
obtain CRN(t)2= So and therefore Eq. (46). 

5. N U M E R I C A L  R E S U L T S  

5.1. Non l inear  V H P  M o d e l  w i t h  Remova l  In te rac t ions  

We consider the initial distribution as a superposition of two 
Maxwellians, 

F(x,O) V(x,O) vl v2 = = - - e  x / ~ l + _ e  x/~2 

"C 1 "C 2 

(47) 

For F(x, 0) to be positive we require ~2 < 1 and ~1 + ~2 >/1. The normaliza- 
tion of particle number and total energy of the system to unity implies 

l - - r2  ~t -- 1 
vl = , v2= (48) 

~ 1 - - ~ 2  T1 - -  Z2 
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Performing the Laplace transformation of the initial distribution (47), 

G(z, 0) v1 v2 - - -  + (49) 
l + r l Z  1 -t- "c2z 

and inserting this result into Eqs. (21) and (22), we obtain finally the 
Laplace-transformed distribution function for arbitrary times, 

N l ( Z )  N 2 ( r )  (50) G(z, t) = 1 + Tl(z) z + 1 + T2(r) z 

Therefore the distribution function has the form 

NI( '~ ) 4- N : (  z ) e _  X/r2(, ) V(x, ~) = T- -~  e " /~ ' ( ' -  r:(~) (51) 

As shown by Hendriks and Ernst, (8) the unknown functions Tl(r), T2(r), 
N~(v), and N2(v) are solutions of the quadratic equation 

T2(rl r2('r - 1 + e -~) + (~1 -[- T 2 ) ( 1  - -  e ~) + e ~) 

- -  T('L'I "C2"~ + ~'1 q- "C2) @ "C l r 2  = 0 (52)  

and Mfill the relations 

1 -- T2(z) Tl(r  ) -- 1 
N l ( 2 : ) -  TI('C ) - Z2(~" ) ' N 2 ( ~ ' ) -  T x ( z ) -  T2(z" ) (53)  

with respect to the time transformation r = r ( t )  given in Eq. (18). For 
T --* 09 it follows from Eqs. (52) and (53) that TI --* 1, T2 ~ 0 and N~ --* 1, 

1.2" 

~(x,t) 

0.9 

0.6 

0.3 

~=~=---2".. 
;7 "< .~=~:a : ;  . . . . . . . . . . . . . . . . . . . . . .  

t = 2  

t = l  

........ ~ = 0  

0.0 2.0 4.0 6.0 8.0 10.0 z 12.0 

Fig. 1. Monotonic approach of/~(x, t) = V(x, t)/e -x  to equilibrium corresponding to initial 
condition (53) with Zl = 4/5, r2 = 3/5, and CR = dR = 0. 

822/66/3-4-24 
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1 . 2 "  

h(X,t)" 

0.9- 

0.6 

0.3 

0.0 

i - - - - - - . . .  

"'- t - - - -1 

.................................... t = O  

' ' ' 2 : 0 '  ' ' 4 : 0 '  ' ' 6 : 0 '  ' ' 8 1 0 '  ' ' 1 0 ' . 0 '  ; ' 12 ' . 0  

Fig. 2. Parameters  as in Fig. 1, but  CR=2 .  

N 2 -+ 0. Inserting these long-time characteristics into Eq. (51), we get the 
Maxwell distribution. 

Figures 1-3 show the convergence of the relative distribution 
R(x, t )=  V(x, t)/V(x, ~)  to the equilibrium state/~(x, ~ ) =  1. 

Comparing Figs. 1 and 2, we observe a delayed relaxation in the case 
that removal events are taken into account (Fig. 2). The mathematical 
reason is an extension of the time base z( t )<  t according to Eq. (18) for 
~/'dR = 0. Physically, we can argue that a slower relaxation of the distribu- 
tion function to the equilibrium state is caused by the loss of particles. 

In the case dR = 2 (Fig. 3) we obtain from Eqs. (51)-(53) and (25) an 
equilibrium distribution in the form 

V(x, ~)=1 .3288e  ll~ 2.1617x (54) 

Fig. 3. 

1.2 

~(x,t 

0 . 9  

0.6 

0.3 

0.0 

7 "  
t = 2  

. . . . .  . .  - - - -  . . . . . . . . . . . . . . . . .  - : - : - : - : - : - : -  

t = J _  

........... t ~ O  

Relative 

' ' ' 2 1 0 '  ' ' 4 ' . 0 '  ' ' 6 : 0 '  ' ' 8 ' . 0 '  ' ' 1 0 ' . 0 '  x '12.'0 

distribution function R(x, t)= V(x, t)/V(x, oo) for ~1=4/5, ~2= 3/5, 
CR = CR = 2, and N = 1. Initial state as in Fig. 1. 
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which widely diverges from the Maxwell distribution e -~. This affects a 
deviation of the relative initial distribution/~(x, 0) in comparison to Figs. 1 
and 2. Contrary to the first impression, the relaxation only seems to be 
faster in Fig. 3, because the initial state is already closer to the equilibrium. 
But the relative equilibrium distribution R(x, oo) --- 1 is reached 
approximately earlier in time. 

5.2. V H P  M o d e l  w i t h  Removal  Terms for  a Tagged  Part ic le  

The Laplace-transformed initial distribution (49) is inserted into 
Eq. (36). The inverse Laplace transformations that appear  can be carried 
out in closed form. (~8) We get for t ~ 1 

C--t 
FL(X,t)=e ~+e ~ t--1 

re-re x(  _v,/zl v2/z2 
+ t - 1  ] 

+e-,~Vle ~(,+ 1/~1) vlt 1 L z, t + 1/'c 1 - 1 e-X(t+ i/rE) 

+e-'~VZe-x('+l/~2)[_% t + 1/z 2v2t - 1 e -~(t+~/~2~ 1 (55) 

and for t = 1 

FL(X, 1)=e-X+!Vlrl --1 e -x(l 

q- - V2 Z" 2 --1 e -x(1+l/z2) 
e 

(56) 

We obtain for arbitrary energy x 

lim FL(x, t)=FL(x, 1) (57) 
t - ~ l  

and 

lim FL(X,t)=M<oe, ~1>1 (58) 
t ~ 1 - -  1 / ' e l  

which prove the continuity of the distribution function for critical values of 
the time variable. 
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1.2 

0,9 

0.6 

0.3 

__"J J - _ :  . . . .  
;? t = 2 ",,. 

0 .0  ' ' ' 2 [ 0 '  ' ' 4 [ 0 '  ' ' 6 : 0 '  ' ' 8 : 0 '  ; ' 1 4 0  

Fig. 4. Solutions of the linear Boltzmann equation. Initial state and parameters as in Fig. 3. 

A comparison between Figs. 1 and 4 shows that this linear VHP model 
does not lead to a satisfactory description of the high-energy tail of the 
distribution function. This result makes clear the necessity of a nonlinear 
treatment of the VHP-Boltzmann equation in general. 

REFERENCES 

1. M. H. Ernst, Phys. Rep. 78:1 (1981). 
2. M. H. Ernst, J. Stat. Phys. 34:1001 (1984). 
3. R. S. Krupp, A nonequilibrium solution of the Fourier transformed Boltzmann equation, 

M. Sci. thesis, MIT (1967). 
4. A. V. Bobylev, DokL Akad. Nauk SSSR 225:1296 (1975) [Soy. Phys. DokL 20:822 (1976)]. 
5. M. Krook and T. T. Wu, Phys. Rev. Lett. 36:1107 (1976). 
6. M. Krook and T. T. Wu, Phys. Fluids 20:1589 (1977). 
7. M. H. Ernst and E. M. Hendriks, Phys. Lett. 70A:183 (1979). 
8. E. M. Hendriks and M. H. Ernst, Physica 120A:545 (1983). 
9. E. M. Hendriks and M. H. Ernst, Physica 112A:119 (1982). 

10. F. Schiirrer and G. KiJgerl, Phys. Fluids A 2:609 (1990). 
11. M. Aizenman and T. A. Bak, Commun. Math. Phys. 65:203 (1979). 
12. M. H. Ernst, in Studies in Statistical Mechanics X, E. W. Montroll and J. L. Lebowitz, eds. 

(North-Holland, Amsterdam, 1983). 
13. V. C. Boffi and A. Rossani, J. Appl. Math. Phys. 41:254 (1990). 
14. G. Spiga, T. Nonnenmacher, and V. C. Boffi, Physica 131A:431 (1985). 
15. G. Spiga, Phys. Fluids 27:2599 (1984). 
16. V. C. Boffi and G. Spiga, Exact time dependent solutions to the nonlinear Boltzmann 

equation, in Proceedings of the 15th International Symposion on Rarefied Gas Dynamics 
Grado, 1986 (Teubner, Stuttgart, 1986), p. 55. 

17. M. H. Ernst, K. Hellesoe, and E. H. Hauge, J. Star. Phys. 27:677 (1982). 
18. M. R. Spiegel, Laplace Transform (McGraw-Hill, New York, 1965). 


